
U T I L I T Y  T H E O R Y  

by Duncan LUCE 

These lectures will deal with utility theory, viewed in 

psychological perspective. Motivation has had little formal 

mathematical treatment in psychology proper; most of the ma- 

thematical work has been done in economics and statistics. 

Consider a situation in which a person has the opportunity 

to accept or reject a money gamble. A possible first assumption 
is that the decision criterion used is the expected money return : 

accept a gamble if its expected return is positive. But no one 

behaves in this way. This is shown, for example, by the St. 

Petersburg Paradox. Luppose a fair coin is tossed until a 
head appears (on trial n) and the gambler is then paid 2nedollars. 

How much would a person pay to play this game once ? The 

expected money return is infinite, so that this criterion would 

dictate that any sum, no matter how large, would be paid. Yet 

everyone has a limit above which he would not pay to play. 

Bernoulli accounted for this fact by suggesting that the utility 

of money increases with money, but at a decreasing rate, and 

that expected utility, rather than expected money return, is 

the criterion. 

1. The Von Neumann-Morgenstern Theory of Utilitz 

Economists have long sought to attach such utilities to 

goods - numbers that would allow goods to be treated in terms 
of classical economics. Traditional numerical representations 

in economics were unique only up to a monotonic transformation : 

they contained only ordinal information. Utility theory was 

advanced with the 1947 edition of von Neumann and Morgenstern's 
Theory of Games. Instead of considering choices between pure 



alternatives of commodities or of quantities of money, as was 

done traditionally, they considered choices between gambles, 
and utilized the probabilities involved in the gambles to 

further specify the utility representation. The main intuitive 

idea was that utility was something whose expected value people 
maximized, and the aim was to find plausible assumptions about 

humans that would lead them to behave this way, in terms of 

some appropriate utility function. (This approach is to be 

contrasted with one where a set of observed properties of behaviol 

is the starting point). Psychologists have later asked whether 

the assumptions hold, i.e. whether people do in fact behave in 
terms of the theory. 

1.1 Outline of the Theory 

We have : 

(1) a Boolean Algebra, E, of events and a probability 

measure, P, over E. E is dense in the sense that : given " [0*1], j e  E E  ap(e) = 77. 

(2) From E and an implicit set of pure alternatives we 
compose a set of gambles (plus pure alternatives) G : if 

4 ,bEG and e e E then aeb E G . (I' aeb " is 

interpreted : pure alternative a if e occurs; alternative b 

if e does not occur). 

(3) There is a binary ordering relation, 3 , over the 
elements of G, representing preference or indifference. 

( > represents preference, represents indifference). 
Now we want to find a set of axioms about the preference 

relation, such that an appropriate structure is imposed on G ; 
in particular we want to be able to derive the following 

representation theorem : 

Representation Theorem : Function u : Gjreals, 
such that 

(i) asbc---zu(c~) Z u(b) 



Any utility function must have property (i), i.e. must 

preserve the ordering of preferences. Property (ii) is the 

expected utility property. Before giving a set of axioms, 

we state two preliminary results. 

Definition : A binary relation R on a set G 
is a weak ordering if for qb,c,FG , a R a  
(reflexive), if @b and bRc then aRc 

(transitive), and for any &b either aRb 

or b R a  (connected). 

Theorem 1 : If the representation theorem 

holds, then 5 is a weak ordering. 

Proof. Follows immediately from (i). 

Theorem 2 : If u, u*are two representations 

satisfying the theorem, then3 K> 9 C 3 U =  Kl.l*+C 
i.e. the representation is unique expect for 

its zero and unit, giving an interval scale. 

Proof. Let a,b~G, a>b, u(@) = A, u(b)= B,u*(a.)=A*, 

u* (b)=~*, 
A-B BA* -AB* Note that K> 0 by a7b 

K'A-*,BI 9 C= A*-B* 
and (i). 

Consider any XEG . We wish to show u(x) = KU* (x)+c. 
There are five cases : we consider the one where ~>b>b. 

By (i),u(x)3 u(@> u(b) . Thus 3 E [0,d 3 u(a) = 

f i  u(x) + (I-p)u(b) . By density of E,e e E 3 P(e) =T - 
Hence U(Q) = P(e)u(x)+ (1-P(eQ u(b) .By (II), u(a) = u(xeb), 

and so a xeb . By the same argument u*(d) = u*(xeb), 

and u" (a) = F'(e)uf (x)+ [i-P(e)l u*(b) . Solving this equation 

and its parallel equation for P(e)and equating gives 

Solving for u(x) gives the desired result. 



To determine what condi t ions  (axioms about 3 ) w i l l  

make poss ib le  such a r ep resen ta t ion ,  t h e  method i s  t o  consider  

what p r o p e r t i e s  the  r e p r e s e n t a t i o n  theorem implies  about 2 , 
and choose from t h i s  s e t  a subse t ,  reasonably minimal and plau- 

s i b l e .  We s h a l l  give one such poss ib le  s e t  of axioms, f o r  the  

s p e c i a l  case when G has a maximum and minimum element. The 

r e s t r i c t i o n  i s  not severe  f o r  p r a c t i c a l  cases ,  and genera l i za t ion  

i s  easy. Our axioms, then,  a r e  

A?. 3 i s  a weak ordering.  (Theorem I )  (Even t h i s  may not  be 

t r u e  of humans). 

A2. G : 3 & , b € G  3 f o r  a l l  xeG, a 2 x  3 b .  

(Max. and Uin. elements) 

A3. I f  x % y % z ,  thenJo( E & 3 xo! z d y .  

( con t inu i ty  assumption) (This may not  be reasonable 
where one outcome i s  incommensurate wi th  o the r s ,  e.g. 

l e t  x = $2.,  y = $I . ,  z = death) .  
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A4. I f  xwy and ~ ( E E  then x d g ~ y o ( z  and z N x . ~ z o ( y .  

A5.  If x>y  then  xa(ykxf iy#P(d)  1;P (p) .  
A6. For d, p,b-, b €  E ,  if PC&)= f'CdlP(Yj+ P C ~ ) ~ I - P ~ ~ ) J  

then  ( * o ~ y ) ~  ( X P ) ' )  X Jy.  
(consider  t h e  compound gamble. x occurs i f  both  %Id- 

o r  if /3 but  not a' occur. By the  r e l a t i o n  among 

p r o b a b i l i t i e s ,  then ,  P(x)=P($). The axiom says  t h a t  

e i t h e r  i m p l i c i t l y  o r  e x p l i c i t l y ,  people can compute 

compound p r o b a b i l i t i e s ,  and so i s  a very s t rong  

assumption. Without i t  o r  an equivalent  t h e  represen- 

t a t i o n  theorem cannot be proved). 

Sketch of Proof of the  Representat ion Theorem. Define 

u ( a ) = l , u ( b ) = O .  L e t x e G  . ByA2 a%x-z,b 
By A 3 , 3 4  ~ X W C L ~ ~  Define u(x)  = P (4) We must now 

show t h a t  u behaves proper ly  : 

Property (i): Let ydQpb a s  above f o r  x. X5Y C-> 

aocb3apb (by A 4 ) k > P ( o ( ) l P ( p )  (by A 5)<-7u(x)Zu(y) 



(definition of u) . 
Property (ii): We have shown how to represent x,y in terms 

of a,b.x r)i ( i c ~ d p ) u ( e # 3  b) ( b y  R 4 )  .v ~ c f b  (by A6, where 
is such that A6 holds). Hence u- (8 YY)= U (LLSPI -  PC&) 
(by definition)= ~ ( 4  )P(&') +n- ~ c ~ ~ ]  PCP)= V W) P ( Y ) ~  ~ ( ~ 1 ~ ~ - ~ ' ' ) ~ *  

Another consequence of the representation theorem, first 

proved by Kemeny and Thompson and later by J. Pfanzagl (~aval 
Research Logistics Quarterly 5, 1959, 283-94) follows. 
Suppose we have gambles involving money, and rn ( a 4 b )  is 

the amount of money indifferent to the gamble a, d b  

Theorem 3. If mCCa+c)d( ~ b + c ) l =  ( a C i b ) + ~  
(consistency assumption) and if the utility 
function, u, is continuous and satisfies 
the expected utility hypotheis, then, either 
a. u(x) = ax + b, (a>O) or 

b. U(x) = gv itv+ b, (ale, A> 1 Or h ~ l ) -  

Note that we are forced to make the consistency assumption 
in experiments, since a person's wealth changes during an 
experiment, in his mind if not in his pocket. 

1.2 Testing the theory : The Uosteller-Nogee Experiment. 

In the first part of this experiment, subjects could 

either accept or reject each of a series of gambles of the 

form x456 Each event was defined by a set of 5 numbers, 
analogous to a poker hand. Possible sequences were ranked, 
as in poker. In accepting the gamble, the subject was betting 
that the set of numbers generated by a throw of 5 dice would 
be better than the stated combination. The subject had before 

him a chart giving for each combination the probability that 
the dice would do better. The experiment consisted, for each 
event and each subject, of varying x until an indifference 
point was found. 

Results of the experiment were as follows : The curve 

of probability of accepting the bet versus x was not a step 
function, as assumed by the von Neumann theory, but was more 



akin t o  a  normal ogive;  preference seemed t o  be va r i ab le  r a t h e r  

than  f ixed .  Defining t h e  ind i f f e rence  poin t  a s  t h a t  value of x 

f o r  which t h e  gamble was accepted ha l f  t h e  t ime,  Mostel ler  and 

Nogee were ab le  t o  c a l c u l a t e  a  u t i l i t y  - of - money func t ion  

f o r  each sub jec t .  The r e s u l t i n g  curves were q u a l i t a t i v e l y  

d i f f e r e n t  from sub jec t  t o  sub jec t .  
I n  t h e  second p a r t  of t h e  experiment, s u b j e c t s  were o f fe red  

choices between gambles. Two s e t s  of p r e d i c t i o n s  were made, one 

using expected u t i l i t y  a s  t h e  c r i t e r i o n  (based on t h e  u t i l i t y  

func t ions )  and one us ing  expected money r e t u r n .  When t h e  gambles 

d i f f e r e d  only a  small  amount i n  t h e i r  expecta t ions  ( i n  u t i l i t i e s  

o r  i n  money) n e i t h e r  p r e d i c t i o n  method succeeded. When d i f f e -  

rences  were l a r g e ,  t h e  u t i l i t y  c r i t e r i o n  l e d  t o  b e t t e r  p red ic t ions  

than  d id  t h e  money c r i t e r i o n .  It i s  hard t o  say  how s t rong  i s  
the  support given by t h i s  experiment t o  t h e  expected u t i l i t y  

hypothesis.  

Later  work has proceeded i n  two d i r e c t i o n s .  The von Neumann- 

Morgenstern theory  assumes sub jec t ive  va lues ,  but not sub jec t ive  

p r o b a b i l i t i e s .  I n  one type of work t h e  p r o b a b i l i t y  assumption 

i s  replaced by something weaker. The second type of work t akes  

s e r i o u s l y  t h e  observat ion  t h a t  preference  i s  not a  s t e p  func t ion  -- 
t h a t  people a r e  not  a lgebra ic .  Since preference  behavior o f t e n  

seems t o  be s t o c h a s t i c ,  a  poss ib le  theory of preference  should 

be a lso .  The a l t e r n a t i v e  i s  t o  develop an e r r o r  theory  f o r  

the  a lgebra ic  model. This a l t e r n a t i v e  i s  d i f f i c u l t ,  p a r t l y  

because e r r o r s  depend s t rong ly  on t h e  choices o f fe red .  For 

example, when choices a r e  between pure sums of money, no e r r o r  
theory i s  needed. This argument l eads  t o  t h e  development of 

a  theory t h a t  i s  i n t r i n s i c a l l y  s tochas t i c .  

2. Poss ib le  Forms of t h e  U t i l i t y  Function 

I n  Theorem 3 above we s t a t e d  t h a t  a  cons is tency axiom f o r  
u,  together  wi th  t h e  expected u t i l i t y  axiom and t h e  c o n t i n u i t y  

of u,  imply t h a t  u must be a  member of a r e s t r i c t e d  c l a s s  of 

funct ions .  The cons is tency axiom has ,  however, been quest ioned,  

and the re  i s  some evidence aga ins t  i t .  We s h a l l  d i scuss  o the r  



assumptions that lead to a different restriction on the 

possible utility functions. 

An important aspect of any scale is the set of admissible 
transformations of the scale, i.e. the set of transformations 

that do not alter the information represented by the scale. 

The scales that have been most studied have been interval 

scales (arbitrary zero and unit) and ratio scales (arbitrary 

unit); the corresponding sets of admissible transformations 

are the positive linear group and the affine group, respecti- 

vely. 

Theories may be divided into two classes, measurement 

theories and substantive theories. A measurement theory 
describes "unitary" relations among objects or events; it 

includes a set of axioms about primitive experimental operations 

that can be checked experimentally. (Examples are axioms 

about the behavior of weights on balances,and the axioms Al-6 
given above about preferences for gambles). If the axioms 

are satisfied, then some representation in terms of a known 

mathematical system is possible. A substantive theory states 
a relationship between two measurement theories. (The measu- 

rement theories for mass and acceleration are related by 

Newton's second law, a substantive theory). 

Suppose that we have two confirmed measurement theories, 

producing numerical scales, and a substantive theory relating 

them. Let u be the function relating the independent variable 

x and the dependent variable u(x). If both variables are 

ratio scales, and if we assume u to exist, do we know anything 

about it ? We do, if we are willing to accept certain assump- 

tions about internal consistency : (I) admissible transforma- 

tions of the independent variable induce only admissible 

transformations of the dependent variable, and (2) the form 

of u is independent of the choice of units for dependent and 
independent variables. 

In particular, suppose we have two ratio scales, and a 

continuous non-constant u maps ratio into ratio. Then x-7loc 

is admissible, u-dm is admissible, and so we must have u(kx) = 



K(k) u(x). But this restricts u, for let x = 1. Then K(k) = 

u(k) u(kx) u(k) u(x) u(x> - . Thus - = - - . Define v(x) E log - 
d l )  u(1) u(1) u(1) u(l> 

Then v(kx) = v(k) + v(x). This is a well known 

functional equation with v(x) = a log x as its unique continuous 
solutions. Thus u(x) =d X is the only possible form for u. 

A utility function transforms a ratio scale (money) into 
an interval scale (utiles). For the first, x-4~~ is admissible; 

for the second u-lku + C (k> 0), is admissible. We must 
therefore have 

~ ( k x )  = K(k)u(x) + C(k), K(k) 7 0 
To facilitate the proof, we assume additionally that u is 

differentiable. (The result is also true for u continuous only). 
Then 

u'(kx)k = K(k)ul(x) 

u x). By the result above, this equation giving us (kx) = - 
has the unique solbtion ul(x) = q%fi , and so we get 

The utility of money is either a power function of money with 
an additive constant, or a logarithmic function of money with 

an additive constant. 

Are the functional equations acceptable ? The only way 
to avoid them is to multiply the ratio scale x by a constant, 

whose units are the inverse of the units of the ratio 

scale; the relust is dimensionless. In this case, multiplying 
x by a scale factor, k, need not impose a transformation on u(x); 

we need only change h to h / K  , An example of this 
situation in physics is given by radioactive decay laws : time 
is variable, but an associated comtant has the dimension time. 

It is a problem why certain laws of physics are expressible 
without forcing the quantities to be dimensionless in this way, 
and others are not thus expressible. If we do not assume 
dimensionless money as the independent variable, and we assume 



the ex i s t ence  of a  u t i l i t y  func t ion ,  t hen  t h e  p o s s i b i l i t i e s  
a re  r e s t r i c t e d  a s  above. The second form i s  t h e  one o r i g i -  
n a l l y  p o s t u l a t e d  by Bernou l l i ,  bu t  t h e r e  i s  some weak evidence 
favoring t h e  f i r s t  . 

3.  A P r o b a b i l i s t i c  U t i l i t y  Theorx 

Moste l le r  and Nogee found t h a t  s u b j e c t s t  choices were 
not c o n s i s t e n t  f o r  a  p a r t i c u l a r  gamble; a  gamble was accepted 
on some t r i a l s ,  r e j e c t e d  on o the r s .  On t h e  o the r  hand, t h e  
behavior was lawful  i n  t h e  sense t h a t  t h e  p r o b a b i l i t y  of 
acceptance changed i n  a  r e g u l a r  way wi th  t h e  expected payoff .  
This s o r t  of r e s u l t  has  been found i n  every  behaviora l  s tudy 
of choices between gambles. Two a l t e r n a t i v e  explanat ions a re  : 
(1) A t  any moment t h e  p r o b a b i l i t y  of acceptance is  a  s t e p  
func t ion  wi th  a  s i n g l e  s t e p ,  but  p a s t  choices inf luence  t h e  
l o c a t i o n  of t h e  s t e p .  This  c a n ' t  be disproved,  but  i t  is  
hard t o  t r e a t  t h e  combination of complicated choices and 
l ea rn ing .  (2)  The behavior t h a t  we observe i s  not  changing; 
t he  l e a r n i n g  phase has  passed. But i t  i s  i n t r i n s i c a l l y  
p r o b a b i l i s t i c .  ( " I n t r i n s i c "  i s  used i n  t h e  sense t h a t  we do 
not at tempt t o  exp la in  the  source of t h e  p r o b a b i l i s t i c  q u a l i t y ) .  
The second explanat ion  l e a d s  t o  t h e o r i e s ,  while  t h e  
fo l lowing i s  an example. 

Assume a  s e t  T of a l t e r n a t i v e s ,  and t h e  ex i s t ence  of 
PT(x) ,  x  E T ,  t h e  p r o b a b i l i t y  t h a t  a l t e r n a t i v e  x i s  chosen 

when s e t  T i s  presented .  (Contrary t o  the  evidence, we a r e  
here assuming t h a t  t h e  order  i n  t ime o r  space i n  which the  
elements of T a r e  presented  i s  i r r e l e v a n t ;  t h e  theory  can be 
modified t o  inc lude  t h i s ,  bu t  we w i l l  no t  do s o  he re ) .  Now 
we assume t h e  usua l  p r o b a b i l i t y  axioms a 

Can any more be s a i d  ? There must be some in t e rconnec t ion  
between t h e  p r o b a b i l i t y  measures f o r  d i f f e r e n t  s e t s  T. For 
example i f  T  = [ r ,y , s ,wJ  and S = [ x , y , z j  , then  we 



expect some r e l a t i on  between probabi l i t i es  of choices i n  T and 

S. The simplest assumption is  one of independence, and is given 

by the Choice Axiom : 
P,(x> 

f o r  XFSCT i f  PT(x I S) = - 
PT(S) 

ex i s t s  then PS(x) = PT(x I S). 

Thus, i f  we know that  the choice is confined t o  S, then the  

probabili ty of choosing x is  the same as i f  S had been presented. 

We are assuming a connection between the two probabi l i ty  measures, 

PS and PT. I f  we attempt t o  t e s t  the choice axiom d i r e c t l ~ ,  we 

run into  order problems, and so we must e i t he r  insure tha t  our 

experiments include no order e f fec t s ,  or e l se  generalize the 

theory t o  include order. We consider some of the  consequences 

of the axiom, which lead t o  indirect  t e s t s .  

Theorem 1 

( i )  if PT(x) # 0 

then PS(x) # 0 

( i i )  i f  PT(x) = 0 and PT(S) # 0, 

then PS (x) = 0 

( i i i )  i f  PT(y) = 0, y # 0, 

then PT(x) = PT- iyl (x) 

( iv )  i f  PT(y) & 0 f o r  a l l  y c T, 

then PT(x) = PS(x)PT(S) 

Theorem 2 I f  PT(y) # 0 f o r  a l l  y e T,  

and we define P(x,y) = P )  then 

( i )  f o r  x,y,z, E ,Y> P(y,z)P(z,x) = 

P(x, Z)HZ,Y)P(Y,X) 

( i i )  3 a r a t i o  scale  v:T -7reals, 



We note that (i) asserts that the intransitivities x y > z > x  
and x 7  2 7  y 7 x  have equal probability and that it implies the 

condition of strong stochastic transitivity, i.e., 

if P(x,y)z $ and P(y,z)? 

To specialize this theory to the utility problem, we 
consider the question of choices between gambles, and make 

use of the leverage provided by a "decomposition axiom" about 

such choices. The choice axiom is applied both to sets of 

pure outcomes and to sets of chance events. The decomposition 
axiom is an independence assumption (weaker than t'he expected 

utility hypothesis) that allows conclusions about a choice 
between gambles by decomposing it into a choice between out- 

comes and a choice between events. Consider the gambles &o(b, 
a j 3 b  . The first would be chosen over the second under the 

conditions a > b (preference) and L L ~  (judged probability) 
or a ( b and 0(4 . Let P(a,b) = probability that a is 

preferred to b, Q ( d , $  ) = probability that* is judged more 
likely than f3 , P(a4 b, a Q b) = probability that the' 
first gamble is chosen over the second. Then we can state the 

We mentioned above that superimposing an error theory 

on an algebraic utility theory was difficult because the 

error phenomenon is uneven; although gambles are not perfectly 

discriminated, pure outcomes are. The present theory produces 
such unevenness automatically, as shown by the theorem to 

follow. Assume, for theorems 3 and 4, the choice axiom for P 
on sets of 3 or fewer gambles, the choice axiom for Q on sets 
of 3 or fewer events, and the decomposition axiom. Define 

1 , ,;o(& p '--> " ( " . P I  L - 
-3 

. Let A be the class of pure 
outcomes and E the class of events, so that G = A x E x A .  



3 a , b e A  
I 

Theorem 3 I f  3 ?(a ,b )  # O,Z, 
I then  w i s  an equivalence r e l a t i o n  having 
a t  most t h r e e  equivalence c l a s s e s .  

Since d 0 td,p 1 = t h e  s u b j e c t  t h inks  events  t 
i n  an equivalence c l a s s  a l l  have t h e  same p r o b a b i l i t y .  The 
l i m i t a t i o n  t o  t h r e e  c l a s s e s  seems con t ra ry  t o  our  experience,  
and so  t h e  theorem sugges ts  t h a t  e i t h e r  our axioms o r  t h e  
condi t ion  of t h e  theorem must be f a l s e .  If t h e  l a t t e r ,  t hen  

we have t h e  unevenness mentioned above, between.pure outcomes - 
we can have only p e r f e c t  d i sc r imina t ion  of preference ,  o r  
i nd i f f e rence .  The s t r e n g t h  of t h i s  r e s u l t  sugges ts  t h a t  d e s p i t e  
t h e i r  apparent  p l a u s i b i l i t y ,  t h e  choice and decomposition axioms 
a r e  so  s t rong  a s  t o  be "almost i ncons i s t en t " .  I f  we be l i eve  
t h a t  t he  p r o b a b i l i t i e s  f o r  pure outcomes can d i f f e r  from 0 ,  & 
1 then t h e  theory  must be d iscarded ,  bu t  t h e r e  i s  l i t t l e  
evidence f o r  t h i s .  The next  theorem has  more d i r e c t  experimental  
consequences. 

Theorem 4 Suppose a ,  b ,  c ,  d ,  c A s ~ ( a , b )  = 
~ ( c , d )  = 1 and gambles (adb ,  a p b )  c a d )  d l  
where 4, fi a r e  choien so t h a t  t h e r e  i s  

confusion between any p a i r .  Then P ( M b, & a d )  -- P(a~ b, cpdj- 

Proof By t h e  decomposition axiom, P h d b ,  Q J ) ~  b)= Q l d l p )  
and P l ~ d d ,  c S d )  = Q(ol.$) 

and so they  a r e  equal .  
By Theorem 2 ,  t h e r e  is  a r e p r e s e n t a t i o n  i n  terms of s c a l e  va lues ,  

and 
v (ad b)  r V (cad)  

V (ao(b)+vCap b) V(s(d)  t vtcpd)  

This g ives  v ( a d b 1  = v(cdd) 
V C a p  b) Veep d )  

and t h e  r e s u l t  fol lows.  

A n  experimental i n t e r p r e t a t i o n  is  a s  fo l lows : Suppose 

we o f f e r  a choice between aab and c4d where a 7 c 7 d 7 b, 

and we vary P( d ) . Then t h e  graph of P ( b ,  ~d 
ver sus  P( d. ) c o n s i s t s  of a s e r i e s  of ascending s t e p s  from 0 

t o  I ,  r a t h e r  than  a continuous curve. The theo ry  does not  



spec i fy  t h e  number o r  width of t h e  s t e p s ,  making s t a t i s t i c a l  

t e s t s  d i f f i c u l t .  However, Luce and Ship ley  have performed 

such an experiment and f i n d  evidence f avor ing  a  s t e p  func t ion  

over a  l o g i s t i c  (og iva l )  curve. The s t a t i s t i c  used i s  the  

number of r e v e r s a l s  : i f  events  a r e  numbered i along the  

P ( d  ) a x i s  and Ni i s  t h e  number of t imes t h e  first gamble 

i s  accepted wi th  t h e  ith event ,  t h e n  Ni - Ni-k 5 0 is  c a l l e d  

a  r e v e r s a l .  The r e s u l t s  f avor  Theorem 4 ,  and thus  t h e  

assumptions l ead ing  t o  i t .  

4. U t i l i t y  Theories  wi th  Subjec t ive  P r o b a b i l i t i e s  

Work s i n c e  von Neumann and Yorgenstern 's  has  proceeded 

i n  two d i r e c t i o n s .  An example of t h e  f i r s t  - p r o b a b i l i s t i c  

t h e o r i e s  - was d iscussed  above. We w i l l  now cons ider  t h e  

second - a lgebra i c  t h e o r i e s  inco rpora t ing  s u b j e c t i v e  proba- 

b i l i t i e s .  

W. Edwards has  discovered seve ra l  r e s u l t s  concerning 

u t i l i t y  t h e o r i e s  wi th  sub jec t ive  p r o b a b i l i t i e s .  The f i r s t  

has  t o  do wi th  t h e  type of u t i l i t y  measurement r equ i red  by 

such a  theory.  Let u s  def ine  a  s u b j e c t i v e  expected u t i l i t y  

i s  I 

where ui i s  the  u t i l i t y  and bi the  s u b j e c t i v e  p r o b a b i l i t y ,  

corresponding t o  t h e  event i. Let u s  cons ider  t h e  r e l evan t  

s c a l e  types  f o r  t h e  u t i l i t i e s  and p r o b a b i l i t i e s .  ( I n  t h e  

von Neumann-Morgenstern theory ,  p r o b a b i l i t i e s  admit no 

t ransformat ions ,  and u t i l i t i e s  admit p o s i t i v e  l i n e a r  t r a n s -  

format ions) .  Suppose t o  begin wi th  t h a t  both s c a l e s  admit 

l i n e a r  t ransformat ions ,  
6; = 4 $dL.+? , 5 = y . + b  

and t h a t  f o r  t h e  two s e t s  of events ,  i = 1 , 2 ,  ..., m and 

i = m + l ,  m+2, ..., m+n t h e  r e l a t i o n  



holds. Let us require the property that the equality must then 

also hold for the transformed variables, i.e. 

The problem is what restrictions are imposed by this property 

on the admissible transformations. We have 

4 a  E L' + L ~  L' + @ b &  9,- + a p Z u i  + h P b  

The first terms of each member are equal by definition, and 

so we have 
-U )+ (n -m)  /7 b= 0 

J L J 

With an additive probability scale, the first parenthesis must 

be zero. The second and third parentheses can be made either 

positive or negative, by appropriate choices of events and 

their numbers. We thus have either a = b = 0 or p  = 0. The 

condition a = 0 cannot be allowed, and so J3 = 0, giving 
ratio scale for probabilities. If the probability scale is 

non-additive then we also have b = 0 and so utility must also 

De a ratio scale. It is difficult to measure utility on a 

ratio scale; a natural zero is not evident. We conclude that 

it is difficult to keep the expected utility hypothesis when 

non-additive subjective probabilities are introduced. 

Edwards has also shown that plausible restrictions on the 

relation between subjective and objective probabilities leads 

to another sort of difficulty. We begin by noting that sub- 

jective probability is very likely not a simple monobonic 
function of objective probability; the way events are described 

matters, as well as their objective probabilities. However, 

let us assume that we can group events into classes and define 

a subjective probability measure over each class so that a sort 



of monotonicity (def ined  by assumption 3 below) ob ta ins  
wi th in  c l a s s e s .  I f  E  i s  t h e  universe  of even t s ,  we have a  

mapping r : E-integers by which t h e  c l a s s e s ,  Er, a r e  

defined,  and E  a U Er. I- 
The mapping yp : Er -> [o, 1] 

def ines  s u b j e c t i v e  p r o b a b i l i t i e s  f o r  events  w i t h i n  the  

rth c l a s s ,  and t h e  mappings % induce a  mapping Y : 

E - 0 ,  on t h e  universe  of events .  I n  a d d i t i o n  we 

have a  mapping p:E -2[~,q , t h e  ob jec t ive  p r o b a b i l i t y  

measure. We assume 

(1)  p  i s  completely a d d i t i v e  

(2) E i s  non-atomic : i f  (a )  # 73 ck' 3 
od p L B ) c  p ( R ) .  ? 

(3 )  vr has  t h e  fol lowing p rope r ty  : 

P o r E , O ,  3 S > 0 9  i f  R C & ~  and 

p ( ~ ) c S  t hen  %(RICE-  
(That is ,  we can f i n d  an event A with 

a s u f f i c i e n t l y  small ob jec t ive  

p r o b a b i l i t y  so  t h e  corresponding 

s u b j e c t i v e  p r o b a b i l i t y  i s  smal l ) .  

(4) y has  t h e  fol lowing proper ty  : 

If p(A) = 0  o r  I ,  

t hen  (A) = 0  o r  1 r e s p e c t i v e l y .  

Theorem 5 If 3' event H 3 9 ( H )  # (H)) 
then  f o r  any P I  O c p c l ,  

3 e v e n t s  R, 8 3 P ( R )  = P 

and p ( 6 )  d p I R )  
but  ( 6 ) 5  Y l h ) + ~ ( l - p )  I ~ ( H )  - P ( H ) ~ *  

Thus, i f  t h e  s u b j e c t i v e  and o b j e c t i v e  measures d i f f e r ,  then 

i t  is always p o s s i b l e  t o  f i n d  a  p a i r  of events ,  one wi th  a  

given o b j e c t i v e  p r o b a b i l i t y ,  such t h a t  t h e  i n e q u a l i t y  of 



subjective probabilities is opposite in direction from the 

inequality of objective probabilities. Under these conditions, 

then, a non-trivial subjective probability measure must be non- 

monotonic . 
Theorem 6 If the image of E under the 
mapping r is finite, then y=P 

Thus if events are grouped into classes, each with its own 

subjective probability measure as above, non-trivial subjective 

probability measure requires an infinite collection of events. 

We would prefer the theory to hold for finite sets of events, 

corresponding to what is possible experimentally. 

Edwards' results show difficulties in the subjective 

probability approach. With an additive measure of subjective 

probability, an infinite set of events is required. And even 

with a non-additive measure, utility must be measurable by 

means of a ratio scale. 

Two ways of avoiding these difficulties are shown in the 

work of Savage, and of Davidson, Suppes and Segel. Savage does 

this by assuming there is no "objective probability" but only 

the subjective variety. Davidson et a1 do it by assuming a 

sparser set of events. 

Savage thinks that the utility and probability problems 

lie together at the foundations of probability; without a 

utility measure we cannot talk about probability. He assumes 

a set of states of the world (events), a set of possible actions 

and a consequence for each state-action combination, and considers 

the problem of choosing among actions. His axioms state consis- 

tency assumptions about such choices, plus the existence of a 

sufficient richness of events. There are no axioms about 

probabilities. From the axioms, Savage finds that (I) there 
exists a mapping of the states onto the closed unit interval 

which satisfies the usual probability axioms, (2) there exists 

a mapping of the consequences onto the real numbers which 

behaves like a utility function (values correspond to the 

ordering by choice), and (3) combining the two, one action is 



preferred over another if its expected utility is greater. 
The probability measure is obtained from a single subject 
and is thus Hsubjective'n; "objective probabilityn arises 

from consensus about choices for certain situations. 
Davidson, Suppes and Segel use the choice situation 

represented by the pay-off matrix 

where the subject chooses the column, and then a chance event, 
o( , chooses the row. They first find a particular event - 

1 one whose subjective probability is - and then hold it fixed 
and observe how subject's choices depend on the payoffs. The 

particular event, q* , is chosen by using the degenerate 
choice situation represented by 

and finding an event for which the probability that the subject 
1 chooses column I is 2; this event is defined to have subjective 

1 probability 2. If, in the more general choice situation, column 
I is preferred, then we must have 

u(ao(*b) > u(c4*d) 
And if the expected utility hypothesis is correct, then 
u c&)#@*) + ~ [ b ) d ( q * ) >  U (c)~(Q(*) + ~ C d ) + ( p ) -  

1 Since d = 2, we get 
u(a) + u(b) > u(c) + u(d) 

The cases of interest are those where equality holds. By 

assigning zero and unit utilities to two outcomes and using 
this method repeatedly, utilities can be assigned to a set 

of outcomes. The problems dealt with by Davidson et a1 are, 
first, developing an axiom system in terms of which the method 
is justified, and secondly, determining whether the relevant 

experiment can be effectively performed. 


